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TD : PROGRAMMATION DYNAMIQUE – JEU DE RÖCKSE 
 
(TD inspiré de XENS-MP-PC-PSI Info 2025) 
 

On dispose sur les cases d’une grille N  N des pénalités et des gains comptés comme des 
pénalités négatives. Le jeu de Röckse débute à la case (0, 0) et cherche un chemin vers la 
case (N - 1,N - 1) qui minimise les pénalités. À chaque étape du chemin, un nombre fini de 
déplacements (sauts) est autorisé. Des cases bonus ajoutent, une fois atteintes, des sauts 
possibles pour la suite du chemin. La figure ci-dessous donne un exemple de grille et deux 

chemins possibles, en supposant que les sauts autorisés sur la grille sont (i, j) → (i, j + 1) (→), 

(i, j) → (i + 1, j - 1) (↙) et (i, j) → (i + 1, j + 1) (↘). On suppose par ailleurs une case bonus en 

(1, 2) (grisée) qui, une fois atteinte, ajoute aux sauts autorisés (i, j) → (i + 1, j) (↓) :  

 
Considérons le chemin décrit en (c). On part de la case de départ (0, 0) et, en appliquant les 
sauts successifs →, →, ↙, → on arrive sur la case bonus. À partir de cette case, le saut ↓ est 
autorisé. On applique ensuite les sauts ↓, ↓, → pour atteindre la case d’arrivée (3, 3). Le 
chemin obtenu est décrit par la liste des cases : 

Chemin = [(0,0), (0,1), (0,2), (1,1), (1,2), (2,2), (3,2), (3,3)] 

Son poids est la somme des pénalités contenues dans ces cases, soit -7. On peut montrer 
que c’est un chemin de poids minimal — on dit qu’il est optimal. Le chemin décrit en (b) est 
correct, mais son poids est de -6. Il n’est donc pas optimal. 
 

Représentation des données. La grille de jeu N  N est représentée par une liste de listes 
d’entiers T telle que T[i][j] est la pénalité à la case (i, j). On suppose que cette représentation 
est bien formée, c’est-à-dire que toutes les listes ont la même taille N. Sur notre exemple : 

T = [[2,-4,-6,0], [1,-2,2,3], [-2,2,-3,4], [-1,4,-3,7]] 

Un saut (i, j) → (i + i, j + j) est représenté par le couple d’entiers (i, j). L’ensemble des 
sauts possibles est ainsi une liste de couples. Sur notre exemple, l’ensemble des sauts 
possibles par défaut (avant d’avoir atteint une case bonus) est : 

sauts = [(0 ,1), (1 , -1), (1 ,1)] 

Les sauts activés par les cases bonus sont enregistrés dans un dictionnaire bonus tel que 
bonus[(i, j)] est la liste des sauts activés par la case bonus (i, j). Sur notre exemple : 

bonus = {(1 ,2): [(1 ,0)]} 
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Complexité. La complexité d’une fonction F est le nombre d’opérations élémentaires 
(addition, multiplication, affectation, test, etc.) nécessaires à l’exécution de F. Lorsque cette 
complexité dépend de plusieurs paramètres n et m, on dira que F a une complexité en 

O((n,m)) lorsqu’il existe trois constantes A, n0 et m0 telles que la complexité de F est 

inférieure ou égale à A·(n,m), pour tout n  n0 et m  m0. Lorsqu’il est demandé de donner 
la complexité d’un programme, le candidat devra justifier sa réponse en utilisant le code du 
programme. 
 
Rappels sur Python. L’utilisation de toute fonction Python sur les listes ou sur les 
dictionnaires autre que celles mentionnées dans ce paragraphe est interdite. Sur les listes, 
on autorise les opérations suivantes, dont la complexité est en O(1) : 

- len(L) renvoie la longueur de la liste L. 

- L[i] désigne l’élément d’indice i de la liste L, pour 0  i < len(L). 
- L.append(e) ajoute en place l’élément e à la fin de la liste L. 

Les opérations suivantes sont également autorisées et leur complexité est en O(n) : 
- L1 + L2 renvoie une nouvelle liste (de longueur n) qui est la concaténation des listes 

L1 et L2. 
- range(n) renvoie la liste [0, 1, ..., n-1]. 
- range(n-1,-1,-1) renvoie la liste [n-1, ..., 0]. 
- L.pop(0) retire le premier élément e de la liste L (de longueur n) et renvoie e. 
- (e in L) renvoie True si l’élément e est dans la liste L (de longueur n), et False 

sinon. 
- L[:] renvoie une copie de la liste L (de longueur n). 

On autorise également les constructions suivantes : 
- La construction for e in L parcourt (itère sur) les éléments de la liste L du premier 

élément (d’indice 0), au dernier élément (d’indice len(L)-1) avec la complexité 
O(len(L)). 

- La construction [f(e) for e in L] produit la même liste que le code suivant, et 
avec la complexité len(L) fois la complexité de f : 

result = [] 
for e in L: 
    result.append(f(e)) 
return result 

 

Sur les dictionnaires, on autorise uniquement les opérations suivantes, dont la complexité 
est en O(1) : 

- Le test (e in d) renvoie True si e est une clé du dictionnaire d, et False sinon. 
- L’accès d[e] à l’élément associé à la clé e dans le dictionnaire d. 

On autorise également les constructions suivantes sur les dictionnaires : 
- La construction for (k,v) in d parcourt les éléments du dictionnaire d. 
- La construction d[k] = v affecte la valeur v à la clé k. 

 
Enfin, on supposera donnée une variable globale INFINI qui contient un entier supérieur ou 
égal à tout entier utilisé dans les programmes de ce sujet. 
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Organisation : Dans ce TD, on commence par récapituler les deux premières parties du sujet 
original : 

- Partie I : porte sur les fonctions de base sur les chemins et les sauts ; 
- Partie II : propose de trouver un chemin optimal avec une recherche exhaustive ; 

 
Ensuite, dans la partie III du sujet original on utilise les résultats de la partie II pour 
construire une méthode de recherche gloutonne. 
 
Enfin, la partie IV du sujet original étudie une résolution du problème par programmation 
dynamique.  

Vous utiliserez les fichiers Python : 
- « 8.2. TD7 - JeuDeRockse.py » : Fichier source à utiliser pour faire vos essais et à 

compléter ; 
- « LibJeuDeRockse.py » : Fichier de bibliothèque à placer dans le même répertoire que 

le fichier source. 

I) MISE EN SITUATION : RAPPELS SUR LES DEUX PREMIÈRES PARTIES 
Cette mise en situation reprend l’ensemble des questions des trois premières parties du 
sujet et demande de tester les fonctions qui étaient demandées à être écrites (ainsi que de 
répondre à quelques questions théoriques associées), afin de se familiariser avec le 
problème du sujet. 
 
Les fonctions sont déjà écrites et vous devez trouver par vous-même des exemples pour les 
tester. 
 

I.1. Partie I du sujet original : Sauts et chemins 

La grille du jeu donnée dans l’exemple du sujet, la liste des sauts, le bonus en case (1,2) et le 
chemin optimal sont renseignés dans le fichier Python : 

# Grille de jeu du sujet 
T = [[2, -4, -6, 0], 
    [1, -2, 2, 3], 
    [-2, 2, -3, 4], 
    [-1, 4, -3, 7]] 
 
sauts = [(0, 1), (1, -1), (1, 1)]   # Sauts par défaut 
bonus = {(1, 2): [(1, 0)]}          # Case bonus en (1,2) 
chemin_optimal = [(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), 
                  (3, 2), (3, 3)] 

 
1. Tester la fonction poids(T,chemin), étant donné un plateau de jeu T et un chemin 

chemin, renvoie le poids de ce chemin : 
2. La fonction est donnée ci-dessous : quelle est sa complexité ? 

def poids(T, chemin): 
    total = 0 
    for (i, j) in chemin: 
        total += T[i][j] 
    return total 
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3. Tester la fonction appliquer_sauts(i,j,sauts) qui, étant donné une case (i, j) et une 
liste de sauts sauts, applique les sauts dans l’ordre donné par la liste sauts, en partant 
de la case (i, j) et renvoie la case atteinte. On suppose que le chemin indiqué par sauts 
reste dans la grille. 
 

4. Tester la fonction sauts_corrects(sauts,bonus,chemin) qui, étant donné l’ensemble 
des sauts par défaut représenté par la liste sauts, les sauts associés aux cases bonus 
bonus et un chemin chemin, renvoie True si les sauts utilisés dans le chemin sont 
corrects et False sinon. On suppose que le chemin reste dans la grille. 

 
On dit qu’un ensemble de sauts C est bien formé s’il ne peut pas mener à un cycle. 
Autrement dit, s’il n’existe pas de suite de sauts construite à partir des sauts de C qui, en 
partant de la case (0, 0) permettrait d’arriver sur une case (i, j) puis de revenir à cette case. 

Une condition suffisante est que chaque saut (i, j) de l’ensemble de sauts C soit 

strictement positif lexicographiquement, condition notée (i, j) ≫ 0 et définie par : 

𝛿𝑖 > 0 𝑜𝑢 𝑏𝑖𝑒𝑛 (𝛿𝑖 = 0 𝑒𝑡 𝛿𝑗 > 0) (*) 

Une suite de sauts 𝛿 est positive lexicographiquement, propriété notée 𝛿 ≫ 0 , si chaque 

saut (i, j) de 𝛿 satisfait (*). 
 
5. Tester la fonction sauts_bien_formes(sauts,bonus) qui, étant donné la liste des sauts 

par défaut sauts et les sauts associés aux cases bonus bonus, vérifie que chaque saut de 
ces listes satisfait la condition (*). La fonction renvoie True si c’est le cas et False 
sinon. 

 
Dans le reste du sujet, on suppose que les sauts utilisés satisfont la condition (*). 
 

I.2. Partie II du sujet original : Recherche exhaustive 

On cherche maintenant à calculer un chemin optimal. Une première solution est de tester 
tous les chemins corrects et de retenir le chemin de poids minimum. L’énumération de tous 
les chemins corrects se fera avec la fonction auxiliaire récursive suivante : 

trouve_complet_rec(T,sauts,bonus,sauts_max,i,j) 
 
Étant donné une grille de jeu T, les sauts par défaut sauts, les sauts associés aux cases 
bonus bonus, une valeur entière sauts_max et une case (i, j), la fonction ci-dessus calcule 
un chemin 𝑝⃗ de poids minimum partant de (i, j). 
 
Le chemin  𝑝⃗  n’arrive pas forcément à (N-1, N-1), mais il a au plus sauts_max+1 cases. La 
fonction renvoie le couple (poids_min, sauts_min) où poids_min est le poids de 𝑝⃗ et 
sauts_min est la liste des sauts pour construire 𝑝⃗. 
 
La valeur sauts_max est utilisée pour limiter la complexité de la recherche. Ainsi, la longueur 
du résultat sauts_min sera inférieure ou égale à sauts_max. Cette limite est appelée 
horizon. Si l’horizon est assez grand, la fonction renvoie un chemin optimal partant de (i, j). 
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1. Quelle est la longueur maximale L d’un chemin de (0, 0) à (N-1, N-1) pour n’importe quel 
ensemble de sauts satisfaisant (*) ? Donner un exemple d’ensemble de sauts par défaut 
pour lequel se réalise ce chemin de longueur L. 

 
2. Tester la fonction trouve_complet(T,sauts,bonus,sauts_max) qui utilise la fonction 

récursive décrite précédemment et renvoie le couple (poids,sauts) où poids est le 
poids du chemin trouvé et sauts est la liste des sauts du chemin trouvé. 

 
3. La fonction est donnée ci-dessous. Quelle est sa complexité ? 

def trouve_complet(T, sauts_defaut, bonus, sauts_max, i=0, j=0): 
    # Taille de la grille : NxN 
    N = len(T) 
 
    # (i,j) : case de départ 
    def trouve_complet_rec(i, j, horizon, sauts_disponibles): 
        if (i, j) in bonus: 
            for saut_bonus in bonus[(i, j)]: 
                if saut_bonus not in sauts_disponibles: 
                    sauts_disponibles = sauts_disponibles + [saut_bonus] 
 
        # Cas de base : arrivée atteinte 
        if i == N-1 and j == N-1: 
            return (T[i][j], []) 
 
        # Cas de base : horizon épuisé 
        if horizon == 0: 
            return (T[i][j], []) 
 
        # On DOIT continuer si un saut est possible 
        meilleur_poids = INFINI 
        meilleurs_sauts = [] 
 
        for (delta_i, delta_j) in sauts_disponibles: 
            i_dest = i + delta_i 
            j_dest = j + delta_j 
 
            if 0 <= i_dest < N and 0 <= j_dest < N: 
                (poids_dest, sauts_dest) = trouve_complet_rec( 
                    i_dest, j_dest, horizon - 1, sauts_disponibles[:]) 
 
                poids_total = T[i][j] + poids_dest 
                if poids_total < meilleur_poids: 
                    meilleur_poids = poids_total 
                    meilleurs_sauts = [(delta_i, delta_j)] + sauts_dest 
 
        # Si aucun saut valide, on est bloqué ici 
        if meilleur_poids == INFINI: 
            return (T[i][j], []) 
 
        return (meilleur_poids, meilleurs_sauts) 
    return trouve_complet_rec(0, 0, sauts_max, sauts_defaut[:]) 
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4. La fonction trouve_complet_rec() perd beaucoup de temps à refaire les mêmes 
calculs. On peut l’améliorer en enregistrant les résultats déjà calculés pour une valeur 
fixée de sauts_max. Expliquer en quelques lignes comment procéder. Quelle serait alors 
la complexité ? 

Dans la suite de ce TD, les fonctions qui sont demandées à être testées n’avaient pas à être 
écrites par le candidat et étaient supposées disponibles dans le sujet. 

II) RECHERCHE GLOUTONNE 
On peut réduire la complexité de la recherche exhaustive en limitant, à chaque étape, 
l’horizon de la recherche, c’est-à-dire le nombre de sauts regardés à partir de la case 
courante. D’où l’idée de construire un algorithme glouton pour trouver une solution. En 
partant de la case (0, 0), on utilise la recherche exhaustive avec un « petit horizon » k pour 
déterminer la meilleure suite locale de k sauts, c’est-à-dire la suite de poids minimal et d’au 
plus k sauts. On joue les sauts de la meilleure suite locale, puis on recommence sur la case 
atteinte, jusqu’à la case d’arrivée (N-1, N-1). Si la recherche exhaustive avec l’horizon k ne 
trouve pas une suite locale, alors l’algorithme abandonne la recherche. 
 
1. Utiliser la fonction trouve_complet() (voir page 5) sur l’exemple donné en introduction 

pour trouver le chemin lorsque k = 2 ? Est-ce un chemin optimal ? 
 

2. Écrire la fonction trouve_glouton(T,sauts,bonus,k) qui, étant donnés la grille de jeu 
T, la liste des sauts par défaut sauts, les sauts associés aux cases bonus bonus et 
l’horizon k, effectue cette recherche gloutonne et renvoie le couple (poids,sauts) où 
poids est le poids du chemin trouvé et sauts est la liste des sauts du chemin trouvé. En 
augmentant k, obtient-on forcément un chemin de poids plus petit ? 

III) RECHERCHE PAR PROGRAMMATION DYNAMIQUE 
On va construire une méthode par programmation dynamique pour trouver un chemin 
optimal. Comme la solution optimale en partant de (i, j) dépend des cases bonus déjà 
rencontrées (cases activées), on remplit le tableau poids_opt[i][j][code_bonus] qui 
contient le poids du chemin optimal en partant de la case (i, j) et où la 3ème dimension 
(code_bonus) encode l’ensemble des cases bonus activées. 

En parallèle, on remplira un tableau saut_opt[i][j][code_bonus] qui contient un saut 
optimal à jouer en partant de la case (i, j). Ce tableau permettra de retrouver un chemin 
optimal. 
 

III.1. Encodage des cases bonus activées 

Soit n le nombre de cases bonus. On numérote les cases bonus de 0 à n - 1. On représente 
les cases bonus activées par une liste de booléens (masque binaire) [b0, …, bn-1] où bk vaut 
True si et seulement si la case bonus k est activée. L’ensemble des cases bonus activées est 

encodé par l’entier dont la représentation binaire est 𝑏̂𝑛−1 . . . 𝑏̂0, où Trûe = 1 et Fâlse = 
0.  Ce code est noté <b0 … bn-1>. Par exemple, le code associé au masque [False, False] 
est 0, le code associé au masque [True, False] est 1, etc. 
 
1. Écrire la fonction code_bonus(masque_bonus) qui renvoie le code associé au masque 

binaire masque_bonus représentant l’ensemble des cases bonus activées. 
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III.2. Récurrence 

On va maintenant donner une récurrence pour le calcul de poids_opt[i][j][code_bonus], 
pour toute case (i, j) et valeur de code_bonus. Cette récurrence sera utilisée dans la section 
suivante pour construire un algorithme. 
 
Pour simplifier l’explication, ignorons les cases bonus dans un premier temps. Si un chemin 
partant de la case (i, j) a un poids minimal, alors le chemin obtenu en lui retirant (i, j) (en 
partant de la case suivante) a lui-même un poids minimal. Une fois poids_opt calculé pour 
tous les successeurs possibles de la case (i, j), il suffit de garder le plus petit et de lui ajouter 
le poids de la case T[i][j]. On obtient ainsi poids_opt pour la case (i, j). 
 

En notant  l’ensemble des sauts par défaut, la définition de poids_opt[i][j] est dans ce cas : 

𝑝𝑜𝑖𝑑𝑠_𝑜𝑝𝑡[𝑖][𝑗] = 𝑇[𝑖][𝑗] + min
(𝛿𝑖,𝛿𝑗) ∈ Γ

(𝑝𝑜𝑖𝑑𝑠_𝑜𝑝𝑡[𝑖 + 𝛿𝑖][𝑗 + 𝛿𝑗]) 

Avec les cases bonus, c’est le même principe sauf qu’il faut gérer les sauts supplémentaires 
des cases bonus activées. Deux cas sont possibles : 

- (i, j) n’est pas une case bonus. Dans ce cas, il suffit de calculer 
poids_opt[i_s][j_s][code_bonus] pour tous les successeurs possibles (i_s, j_s) de 
la case (i, j) avec les sauts par défaut et les sauts associés à chaque case bonus 
activée de code_bonus. Le poids_opt[i][j][code_bonus] est alors le minimum de 
ces poids_opt[i_s][j_s][code_bonus] auquel s’ajoute la pénalité T[i][j] de la case 
(i, j). 

- (i, j) est une case bonus. Dans ce cas, c’est le même processus, sauf que : 1) parmi les 
sauts possibles, on ajoute ceux activés par la case bonus et 2) on considère les 
successeurs (i_s, j_s) avec un nouveau code bonus code_bonus’ dans lequel la case 
bonus (i, j) est activée : le minimum doit ainsi être calculé parmi les 
poids_opt[i_s][j_s][code_bonus’]. 
Si code_bonus = <b0 … bn-1>, en notant k le numéro de la case bonus (i, j), on 
changera bk à True pour obtenir code_bonus’ = <b0 … b’k … bn-1>, où b’k = True. 

 

1. Écrire la définition de poids_opt[i][j][<b0 … bn-1>]. On notera  l’ensemble des sauts 

par défaut et k l’ensemble des sauts associé à la k-ième case bonus. 
 

III.3. Algorithme 

On évalue itérativement les différentes cases poids_opt[i][j][code_bonus] de 
poids_opt à l’aide de trois boucles imbriquées en itérant respectivement sur i, j et le 
masque de bonus (d’où on tirera code bonus). La difficulté est de trouver un ordre 
d’évaluation correct. Les poids_opt[i][j][<b0 … bn-1>] doivent être évalués après avoir 
obtenu les poids des successeurs : poids_opt[i+i][j+j][<b0’… bn-1’>]. 

- Comme (i, j) >> 0 (condition (*)), alors i + i > i ou bien i = 0 et j + j > j, donc les 
itérations sur i et j doivent être « à l’envers », de N - 1 à 0. 

- Soit [b’0, …,b’n-1] est égal à [b0, …,bn-1], soit [b’0, …,b’n-1] est obtenu à partir 
de [b0, …,bn-1] en mettant un bk à True. En d’autres termes, le choix de bonus 
représenté par [b0, …, bn-1] est inclus dans le choix de bonus représenté par     
[b’0, …,b’n-1]. La boucle sur les masques de bonus doit donc itérer par choix de 
bonus décroissant au sens de l’inclusion. 
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Avec 3 cases bonus, un ordre est le suivant : 
[True,True,True], puis 
[False,True,True], [True,False,True], [True,True,False], puis 
[False,False,True], [False,True,False], [True,False,False], puis 
[False,False,False] 

 
Noter que les choix rassemblés sur une ligne ne sont pas classables entre eux. Par contre, les 
choix d’une ligne sont strictement supérieurs au sens de l’inclusion à l’un des choix de la 
ligne suivante. 
 
Un algorithme pour calculer l’ordre d’évaluation des masques de bonus peut procéder 
comme suit. On commence par le choix total, dans notre exemple [True,True,True]. On 
construit la ligne suivante en insérant les choix obtenus en basculant une coordonnée True à 
False. Par exemple, on insère [False,True,True], [True,False,True], 
[True,True,False]. On itère ensuite sur chaque choix obtenu pour construire la ligne 
d’après. On s’arrête lorsqu’on atteint le choix vide, dans notre exemple 
[False,False,False]. On pourra utiliser une file pour défiler les choix de bonus à traiter et 
enfiler progressivement les choix de bonus de la ligne suivante. 
 
1. Écrire une fonction combinaisons_bonus(nb_bonus) qui, étant donné le nombre total 

de cases bonus nb_bonus, renvoie la liste de masques bonus ordonnée de manière 
décroissante dans le sens de l’inclusion, en codant l’algorithme ci-dessus. 

 
Tester :  >>> combinaisons_bonus(3) 

[[True, True, True], [False, True, True], [True, False, 
True], [True, True, False], [False, False, True], [False, 
True, False], [True, False, False], [False, False, 
False]] 

 
2. Tester la fonction ranger_bonus(bonus) qui renvoie un couple (bonus_au_rang, 

rang_du_bonus) tel que : 
- bonus_au_rang[k] : liste des sauts activés par la case bonus dont le numéro est k ; 
- rang_du_bonus[(i,j)] : numéro de la case bonus (i, j) dans un masque de bonus. 

 
Le résultat de cette fonction est utilisé comme paramètre pour la question suivante et pour 
la fonction ajouter_bonus décrite après. 
 
3. Écrire une fonction : 

trouver_sauts_possibles(sauts,bonus_au_rang,masque_bonus) 
 
… qui, étant donnés les sauts par défaut sauts, la liste bonus_au_rang renvoyée par 
ranger_bonus(bonus) et le masque des bonus activés masque_bonus, renvoie 
l’ensemble des sauts possibles. 

Tester :  >>> sauts = [(0, 1), (1, -1), (1, 1)] 
>>> bonus = {(1, 2): [(1, 0),(-1,0)], (1,3):[(-1,-1)]} 
>>> bonus_au_rang, rang_du_bonus = ranger_bonus(bonus) 
>>> trouver_sauts_possibles(sauts, bonus_au_rang, [False,False]) 
[(0, 1), (1, -1), (1, 1)] 
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>>> trouver_sauts_possibles(sauts, bonus_au_rang, [False,True]) 
[(0, 1), (1, -1), (1, 1), (-1, -1)] 
>>> trouver_sauts_possibles(sauts, bonus_au_rang, [True,False]) 
[(0, 1), (1, -1), (1, 1), (1, 0), (-1, 0)] 
>>> trouver_sauts_possibles(sauts, bonus_au_rang, [True,True]) 
[(0, 1), (1, -1), (1, 1), (1, 0), (-1, 0), (-1, -1)] 

 
4. Tester la fonction : 

ajouter_bonus(bonus,rang_du_bonus,i,j,bonus_actifs,code_bonus_actifs) 

 
… qui active la case bonus (i, j) dans le code des cases bonus activées 
code_bonus_actifs. 

 
Si (i, j) n’est pas une case bonus, la fonction renvoie code_bonus_actifs. L’argument 
rang_du_bonus est la structure renvoyée par ranger_bonus(bonus) et l’argument 
bonus_actifs est le masque des bonus actifs dont le code est code_bonus_actifs. 

 
 
Le code Python incomplet de la page suivante (également donné dans le fichier source du 
TD) implémente la fonction trouve_dynamique(T,sauts,bonus) qui, étant donnés une 
grille de jeu T, la liste des sauts par défaut sauts et les sauts associés aux cases bonus 
bonus, calcule le chemin optimal par programmation dynamique en utilisant la récurrence 
trouvée en question dans la partie III.2. Le résultat de la fonction est le couple 
(poids_opt,sauts_opt) où poids_opt est le poids du chemin optimal trouvé et 
sauts_opt est la liste des sauts de ce chemin. 
 
 
5. Compléter les sept parties manquantes indiquées par << ... >> dans le code. 

 
6. Quelle est la complexité de cette fonction ? 

 
7. Écrire la fonction solution_dynamique(saut_opt,N) qui, étant donnés la structure 

saut_opt calculée dans la question précédente et la dimension N de la grille, renvoie le 
chemin optimal correspondant. La fonction renvoie le chemin vide [] s’il n’existe pas de 
chemin entre la case de départ et celle d’arrivée. 
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def trouve_dynamique(T,sauts,bonus): 
    N = len(T) 
    nb_bonus = ....... 
    nb_code_bonus = 2**nb_bonus 
    poids_opt = [[[INFINI for bonus_code in range(nb_code_bonus)] 
                          for j in range(N)] 
                          for i in range(N)] 
    saut_opt = [[[(0,0,0) for bonus_code in range(nb_code_bonus)] 
                          for j in range(N)] 
                          for i in range(N)] 
    (bonus_au_rang ,rang_du_bonus) = ranger_bonus(bonus) 
    for bonus_actifs in combinaison_bonus(nb_bonus): 
        code_bonus_actifs = code_bonus(bonus_actifs) 
        poids_opt[N-1][N-1][code_bonus_actifs] = ..... 
        sauts_possibles = ........ 
        for i in range(.......): 
            for j in range(......): 
                if i == N-1 and j == N-1: 
                    continue 
                code_bonus_dest = ajouter_bonus(bonus,rang_du_bonus,i,j,   
                                         bonus_actifs,code_bonus_actifs) 
                if (i,j) in bonus: 
                    sauts_possibles_final = sauts_possibles + bonus[(i,j)] 
                else: 
                    sauts_possibles_final = sauts_possibles 
                for (delta_i ,delta_j) in sauts_possibles_final: 
                    i_dest = i + delta_i 
                    j_dest = j + delta_j 
                    if (i_dest in range(N) and j_dest in range(N)): 
                        poids_opt_dest = poids_opt[i_dest][j_dest][code_bonus_dest] 
                        if (poids_opt[i][j][code_bonus_actifs] > poids_opt_dest): 
                            poids_opt[i][j][code_bonus_actifs] = ......... 
                            saut_opt[i][j][code_bonus_actifs] = .......... 
                poids_opt[i][j][code_bonus_actifs] += T[i][j] 
    return (poids_opt, saut_opt) 

 


